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Carbon capture is an essential technology for climate change mitigation. Analysis by dozens of 

organizations, most notably the Intergovernmental Panel on Climate Change (IPCC)1 and the 

International Energy Agency (IEA),2 confirm the need for carbon capture to decarbonize key sectors 

(including steel, concrete, chemicals and aviation). As global greenhouse gas (GHG) emissions have 

continued to rise in recent years, carbon capture has received growing acceptance and been 

featured in international agreements, including the Dubai Consensus3 and Sunnylands Agreement.4  

Many governments, including those in the United States,5,6 the European Union,7,8 China9 and 

Germany,10 have included carbon capture as a key strategy to help achieve ambitious climate targets. 

National and international carbon capture programs include grants and loans for project 

demonstration, fiscal incentives (including tax credits and contracts for differences), infrastructure 

investment and robust investments in innovation. As a consequence, the number of operating and 

announced projects have increased significantly.11,12 

 
Figure 9-1. Components of the carbon capture value chain including technology and infrastructure elements. 

 Source: IEA, 202413 

The field of carbon capture includes many forms of technology and cuts across many energy and 

climate sectors.14 The core technology sets include many parts (Figure 9-1): 

▪ separation of CO2 from points source, the air and the ocean;  

▪ transportation of CO2, including pipeline construction and operation, barges, ships and trucks; 

▪ storage of CO2 in dedicated geological formations, including saline aquifers, depleted oil and 

gas fields, and basaltic formations; 

▪ conversion of CO2 into new building materials, chemicals and fuels and 

▪ removal of CO2 from the air and oceans using biomass and minerals as vectors for removal and 

storage to achieve climate neutrality15  

Carbon capture systems can reduce the GHG footprint of existing fuels (e.g., bioethanol, aviation 

fuels), feedstocks (e.g., hydrogen) and energy sources (e.g., natural gas, biomass), as well as provide 

critically important climate services independent of energy production.  

Despite some core technologies being quite mature,16 integrated carbon capture systems are not 

widely commercialized and new technologies—including novel electrochemical means of CO2 

conversion and direct air capture operations—enter the field often. Although the costs for some 
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applications are modest (below $50/tonne CO2), others are substantial (>$100/tonne CO2),17 

prompting decision makers to support means of reducing capital and operating expenses. 

Small wonder, then, that AI could improve many aspects of this field, including technical elements 

(efficiency, performance, environmental benefits), commercial aspects (cost, routing) and policy 

concerns (equity and justice, resource allocation). The literature on AI applications in carbon capture 

is young, but the potential for AI to improve carbon capture appears significant, based on both 

primary manuscripts and reviews.18,19 

This chapter describes some promising applications of AI in the broad field and specific subfields of 

carbon capture, including specific recommendations for key actors in climate and energy. 

A. Capture Technology 

Separating CO2 from industrial waste streams, ambient air or the oceans requires chemical, physical 

or electrical processes, such as electrical-swing adsorption, humidity-swing adsorption and phase-

change systems. These processes use chemical agents (e.g., liquid solvents and solid sorbents), 

functional components (e.g., contactors and membranes), well-functioning reactors and integration 

with other systems. For each of these steps, AI can play a role and already has begun to do so. 

i. Materials discovery and functionalization 

AI can assist in discovering new materials with properties that enable profound improvements in 

energy use, efficiency, strength and other key properties.20,21 (See Chapter 6 of this Roadmap.) 

Carbon capture is particularly well suited for these approaches,22 in part because of the key role 

materials (including liquid solvents, solid sorbents and membranes) play in CO2 separation. AI speeds 

up the discovery of new materials23,24 that can improve performance, including in the CO2 loading of 

chemical systems, heat capacity,25 energy consumption in CO2 regeneration and longevity. In 

particular, metal-organic frameworks (MOFs) have proven well-suited to discovery through AI tools, 

which can collapse the range of possible materials into promising options in terms of structure, 

composition and design.26 

However, having a library of suitable materials will not lead to deployment if the materials are not 

made or functionalized. AI has proven helpful in prioritizing which materials to fabricate and test 

based on their estimated performance, but benefits of these materials cannot be realized until they 

are built into filters, monoliths and other gas-contact media. AI has already proposed ways to 

improve functionalization (e.g., ways to structure solid sorbents to improve loading and 

performance).27 Studies that demonstrate how AI can enhance manufacturing and functioning of 

other materials (e.g., carbon nanotubes28) show promise for carbon capture materials, as well. Given 

the very large range of approaches to manufacturing and functionalizing carbon capture materials, AI 

could help identify processes and pathways with high performance and chance of success. 

ii. Novel capture system 

AI can also accelerate development of novel processes for capture, regeneration and CO2 conversion. 

Many novel processes are still designed through trial and error, including novel fluidized bed 

reactors, use of ionic liquids and dual-function processes that perform both CO2 capture and 
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conversion to chemicals like methanol. AI has proven useful in accelerating system design and 

testing—for example by helping identify and improve a novel regeneration process 

(electrochemically mediated amine regeneration).29 Exploration of these process engineering and 

design options is only at the earliest stages. 

iii. Capture system operation, optimization and integration 

AI tools have already been applied to manufacturing and industrial production processes to good 

effect. (See Chapter 5 of this Roadmap.) Carbon capture systems can benefit from similar 

applications. This includes the use of digital twins of existing or planned facilities to assess and 

implement tools for efficiency gains. One study found that, by improving clean electricity delivery 

from the grid, AI tools could help carbon capture systems improve capture rates by >16% and reduce 

energy use by >35%.30 Additional approaches include efficiency improvements through heat 

integration and reactor design optimization. Another study used AI to better optimize temperature, 

pressure and composition to enhance CO2 solubility to increase uptake and reduce energy costs.31 

These tools have the potential to dramatically improve system performance, reducing capital cost, 

operating expense and energy consumption (Figure 9-2).  

Figure 9-2. An example of an implementation of machine learning (ML) for a CO2-capture process. (A) Simplified flow 

diagram of an absorbent-based CO2-capture process. (B) Illustration of an artificial neural network serving as an ML 

algorithm to correlate the reboiler-specific duty (Wreboiler) and CO2-capture rate (Qcaptured) as model outputs to the key 

operational parameters, including the flue gas temperature (T), CO2 fraction (XCO2) and flow rate (Qfg), and the 

absorbent flow rate (Qab) as inputs. Source: Rahimi et al, 2021.27 

B. Transportation and Storage 

i. Transportation 

Once captured, CO2 is moved to storage sites using a mix of approaches, including pipelines, ships 

and barges, and trucks. AI tools have already begun to help governments, private industry and 

communities develop plans for CO2 transport that maximize CO2 volume while minimizing cost and 

risks.32,33 One study in China—a country with many large point-sources and very few CO2 pipelines—
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estimated total cost and network size for pipelines could be reduced by 12.5% using AI tools,34 

reducing embodied carbon emissions in fabrication and construction, as well as capital cost. 

ii. Geological storage 

Manipulating fluids in deep geological formations involves uncertainty, inference, interpretation of 

monitoring tools and making choices that require trade-offs. For geological storage of CO2, critical 

uncertainties can involve the presence or absence of storage porosity (pore volume), the 

permeability of storage formations, the ability of overlying units to trap CO2, and connectivity 

between units, across rock bodies and faults. In some cases, local data (field scale) and regional data 

(decades of exploration and production) are abundant and can help shape key choices. In other 

cases, geological data are scarce and operators face greater uncertainties. 

AI can help in both cases. Where data are relatively abundant, workers have used AI to assess critical 

components of CO2 storage systems, including geological storage efficiency,35 trapping and overall 

site performance,36,37 and monitoring38 (Figure 9-3). In locations with lower data quality or volume, 

studies have used synthetic data volumes to train AI.39 Although initial results have been impressive, 

the lack of large data volumes risks generating hallucinations in greenfield sites or frontier basins, 

requiring greater human intervention and validation. Finally, AI can serve to identify prospective new 

sites for CO2 storage—an approach piloted by Microsoft40 and others, where data availability may be 

either abundant or scarce. 

   

Figure 9-3. A representative process flow for using machine learning (ML) systems to predict and manage 

performance of subsurface CO2 storage systems. From Thanh et al., 2022.37 
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AI approaches are likely to prove useful and accurate for traditional energy companies with large, 

complex in-house data sets. Already, industry has begun to pursue research and operational 

collaborations using AI tools. For example, Total Energies has partnered with Cerebras41 and IBM42 to 

identify and de-risk high-quality CO2 storage sites. Similarly, Halliburton has developed an AI based 

analytical system to understand subsurface risks,43 which could be used to predict the performance 

of geological CO2 storage systems. In some cases, these specific tools began as means to optimize oil 

and gas production and have been converted or modified for geological CO2 storage (e.g., optimizing 

CO2-enhanced oil recovery (EOR) for oil production or for geological storage with AI).44,45 These serve 

as an example of how AI only delivers climate benefits when asked to deliver them. 

C. CO2 Conversion to Products 

Like CO2 separation, CO2 recycling and conversion processes involve chemical agents and materials, 

functional components (e.g., contactors), and fit-for-purpose reactors. AI can play similar roles in 

these endeavors as it plays in capture technologies, including material discovery, reactor 

optimization and system integration. Opportunities are many and broad,46 involving direct chemical 

synthesis, biological intermediaries, novel reactors and materials, and mineralization (Figure 9-4). 

 

Figure 9-4. Potential applications of AI for CO2 conversion and recycling, including subdisciplines of high interest. From 

NETL.47 

▪ Chemical reduction of CO2: Many CO2 recycling pathways begin by converting CO2 (carbon 
dioxide) to CO (carbon monoxide) or other simple organic compounds, such as methanol 
(CH3OH). AI has already discovered special materials and processes that chemically reduce 
CO2 through electrocatalysis,48 photocatalysis,49 enhanced biological processes50 and multi-
phase thermal catalysis.51 
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▪ Novel chemical synthesis: AI has begun to recognize novel approaches to making compounds 
out of CO2. This includes turning CO2 into starches, proteins and complex hydrocarbons.22,52,53 
One intriguing use of AI involved identifying “dual-purpose” materials that combine capture 
and conversion in one chemical step.54,55 

▪ Characterizing waste and input streams: Industrial and municipal waste streams are often 
complicated mixes of many materials, compounds and substances. In some cases, these 
waste streams have substantial fractions of reactive compounds that could be well-suited to 
mineralization or other CO2 utilization pathways.56 AI can simplify and streamline these 
wastes for improved use.57 

D. Other Carbon Capture, Utilization and Storage (CCUS)-related AI 

Applications 

A cross-cutting technical concern with deploying carbon capture, utilization and storage (CCUS) 

involves accurately characterizing and understanding the full life-cycle assessment. Since new CCUS 

facilities commonly require energy, materials, land, construction and water, it is important to both 

understand the likely life-cycle implications, including both construction and operational phases, as 

well as to identify potential pathways to improve life-cycle. In the case of some CO2 utilization 

pathways, this can be particularly complicated, as they include multiple supply chains and complex 

displacement pathways. AI can help provide life-cycle analysis, including initial life-cycle estimates, 

assessments of improvement opportunities and quantification, and trade-offs in design and 

operation of facilities between cost, carbon intensity and key environmental attributes (e.g., water 

consumption).58 

AI could also help address non-

technical issues associated with 

deploying CCUS. For example, existing 

facilities may need to update air or 

water permits when retrofitting for 

carbon capture or use. This process 

can be cumbersome, with long 

timelines and high expense. Similarly, 

permits for CO2 storage wells require 

substantial data and analysis and are 

often backlogged. AI, including both 

large language models (LLMs) and 

digital twinning, could help facilitate both drafting and reviewing of permits, reducing time and costs. 

AI could help prepare the necessary written documents to receive tax credits for carbon storage or 

utilization under programs such as those in the US Inflation Reduction Act.59 

Finally, AI can help ensure that local stakeholders do not suffer environmental burdens or health 

risks associated with CO2 pipelines or siting other carbon capture facilities. Specifically, AI can help 

assess and provide environmental baselines60 and monitor changes in the environment61 from 

construction or pollution. AI can help consider the trade-offs in CO2 transportation options, including 
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cost, risks and environmental burdens. Initial work at the US National Energy Technology Lab (NETL) 

and the US Environmental Protection Agency (EPA) suggest potential AI applications and tools to help 

planners, regulators, investors and community stakeholders develop projects of all kinds in ways that 

are equitable and just. 

E. Barriers  

In addition to the many barriers confronting CCUS, increasing adoption and use of AI in CCUS 

presents specific challenges. The first and most critical issues, as is often the case, are data-related, 

including access, quality and volume. Data access involves the availability of specific compounds 

(catalysts, sorbents, solvents), reactors and facilities that might benefit from AI applications, which 

are likely to be limited due to intellectual property constraints, operational security and other 

commercial concerns. Data quality issues are related, including ensuring accurate metadata 

population and tracking and avoiding duplication of results and analyses, which require time, 

attention and specific coding to resolve. Data volume issues will most likely involve insufficient data, 

especially given the relatively small number of operating CCUS companies and facilities. While these 

could be overcome over time, these issues will likely prove challenging in the near- to mid-term. 

The second set of challenges 

are workforce-related. CCUS 

broadly faces workforce 

shortfalls,62,63 which are likely 

to be compounded by lack of 

training or familiarity with AI 

tools, methodologies and 

potential application. Although 

some corners of the CCUS 

enterprise are relatively 

familiar with AI tools and 

approaches (e.g., molecular 

discovery, digital mirroring), 

many groups in the ecosystem and value chain are unlikely to have the facility and sensibility to seek 

or employ AI-based tools today, whether for permitting or for reactor design. 

F. Risks 

Some of the barriers described above may manifest specific risks of AI use. For example, the lack of 

data for some applications could lead to generation of pseudo-data, which can increase the chance 

of hallucinations or simple errors. Similarly, the lack of trained workforce could introduce bias and 

fail to recognize specious results (e.g., in financial or regulatory affairs).  

Some risks, independent of other barriers, could prove substantial. Since almost all CCUS projects 

and developments are taking place in countries within the Organization for Economic Co-operation 

and Development (OECD), geographic bias is an enormous risk, ranging from estimated costs to 
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permitting ability or climate justice concerns. This could prove particularly true for subsurface studies 

and planning, where lack of subsurface data in key geographies or applications (e.g., in situ 

mineralization) could limit the ability of AI tools to generate useful and accurate results. Since 

geology varies greatly from region to region, misapplying Ai results could prove devastating to 

project success, which in turn might risk the CCUS enterprise.  

Such risks could be mitigated at relatively low costs through a combination of management, training 

and review, but they would most likely require additional human and financial resources, which 

could prove hard to find. 
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G. Recommendations 

1. National governments and private companies should expand current research, development and 

demonstration (RD&D) programs in carbon capture to include AI methodologies, with 

commensurate increased funding.  

a. Specific use-inspired research topics would include material discovery (especially sorbents 

and solvents for carbon capture), functionalization of materials, and novel reactor design 

(including catalysts for CO2-to-products). They should consider prioritizing efforts beyond 

simple material discovery and focus on more applied and operational aspects of CO2 capture. 

Near-Medium term 

b. Applied research topics could include optimizing systems (including heat integration, use of 

digital twins, minimization of heat and electricity demands) and designing key infrastructure 

pathways (including location, size and operation for CO2 transportation and storage design), 

operation and MMRV (measurement, monitoring, reporting and verification)). Near and 

medium term, with near term emphasis. 

c. Government granting entities must hire and/or train personnel that are sufficiently trained 

and knowledgeable to be able to review AI-related proposals well. Near and medium term. 

2. Asset owners, utility owners and operators, industrial manufacturers and key state-owned 

enterprises should use AI tools and methodologies to accelerate assessment of CCUS pathways for 

existing and planned assets. This should include cost-benefit determinations in comparison with 

other decarbonization options, with the goal of establishing a ranking of opportunities. Near 

term. 

3. National governments should use AI, including LLMs and other generative AI platforms, to 

streamline permitting processes for carbon capture in all forms. This includes permitting wells for 

CO2 injection and processing pipeline rights of way, power electronic designs, and processing 

revisions to air permits for facility retrofits. Near term. 

4. National governments and private companies should use AI to improve resource characterization 

for carbon capture, with emphasis on characterizing geological storage resources. AI-enabled 

resource characterization should extend beyond bulk storage terms and volume estimates to 

include understanding of injectivity, permeability fields and risks posed by pre-existing wells. 

Where possible, national and state governments and some private companies should make data 

available for training, either through voluntary sharing and federation or mandates. Near term. 

5. Professional societies, academic experts and carbon accounting bodies should launch training 

programs on the potential for AI in carbon capture. This could include use of AI for life-cycle 

assessments of carbon capture systems, as well as the RD&D topics stated above. Near and 

medium term. 
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6. National governments, private companies and academic researchers should immediately 

commence with identifying key data requirements for enabling AI in carbon capture. Once 

identified, these three groups should work to gather, federate and share these data while 

providing fair, judicious access. Near term. 
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